试题 试卷
题型:解答题 题类:模拟题 难易度:普通
如图所示,已知ΘO1和ΘO2相交于A,B两点.过点A作ΘO1的切线交ΘO2于点C,过点B作两圆的割线,分别交ΘO1 , ΘO2于点D,E,DE与AC相交于点P,
(Ⅰ)求证:PE•AD=PD•CE;
(Ⅱ)若AD是ΘO2的切线,且PA=6,PC=2,BD=9,求AD的长.
(Ⅰ)求证:BC•CD=AD•DB;
(Ⅱ)若BE=4,点N在线段BE上移动,∠ONF=90°,NF与⊙O相交于点F,求NF的最小值.
如图在△ABC中,∠C=90°,BE是∠CBD的平分线,DE⊥BE交AB于点D,圆O是△BDE外接圆.
(Ⅰ)求证:AC是圆O的切线;
(Ⅱ)如果AD=6,AE=6 , 求BC的长.
如图,A、B是圆O上的两点,且AB的长度小于圆O的直径,直线l与AB垂于点D且与圆O相切于点C.若AB=2,DB=1
(1)求证:CB为∠ACD的角平分线;
(2)求圆O的直径的长度.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
圆O:x2+y2=4交于点A,B,与圆M:(x﹣2)2+(y﹣1)2=1交于点C,D.
试题篮