试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
(1)证明:正三角形内任一点(不与顶点重合)到三边的距离和为定值.
(2)通过对(1)的类比,提出正四面体的一个正确的结论,并予以证明.
举一反三
下面使用类比推理正确的是( )
我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为
.若a
2
sinC=4sinA,(a+c)
2
=12+b
2
, 则用“三斜求积”公式求得△ABC的面积为( )
由“正三角形的内切圆切于三边的中点”可类比猜想:正四面体的内切球切于四个面( )
已知
=2
,
=3
,
=4
,…,若
=7
,(a、b均为正实数),则类比以上等式,可推测a、b的值,进而可得a+b={#blank#}1{#/blank#}.
著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:
可以转化为平面上点M(x,y)与点N(a,b)的距离.结合上述观点,可得
的最小值为( )
求
的值时,可采用如下方法:令
,则
,两边同时平方,得
, 解得
(负值舍去),类比以上方法,可求得
的值等于( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册