试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
设点M(x
0
, 1),若在圆O:x
2
+y
2
=1上存在点N,使得∠OMN=30°,则x
0
的取值范围是( )
A、
[﹣
,
]
B、
[﹣
,
]
C、
[﹣2,2]
D、
[﹣
,
]
举一反三
已知O为坐标原点,设动点M(2,t)(t>0).
已知直线l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒过定点P,圆C经过点A(4,0)和点P,且圆心在直线x﹣2y+1=0上.
过点(3,1)作圆(x-2)
2
+(y-2)
2
=4的弦,其中最短弦的长为{#blank#}1{#/blank#}.
已知圆
:
(其中
为圆心)上的每一点横坐标不变,纵坐标变为原来的一半,得到曲线
.
在平面直角坐标系
xOy
中,圆O:
与圆M:
相交于A,B两点,若在直线AB上存在一点P,使
成立,则
r
的取值范围为{#blank#}1{#/blank#}.
已知向量
,
,
满足
,
,
,
, 则( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册