题型:解答题 题类:常考题 难易度:普通
某研究小组为了研究中学生的身体发育情况,在学校随机抽出20名学生,将他们的身高和体重制成如下所示的2×2列联表:
超重 | 不超重 | 合计 | |
偏高 | 4 | 1 | 5 |
不偏高 | 3 | 12 | 15 |
合计 | 7 | 13 | 20 |
(1)在超重的学生中取两个,求一个偏高一个不偏高的概率;
(2)根据联表可有多大把握认为身高与体重有关系?
喜欢数学课 | 不喜欢数学课 | 合计 | |
男 | 30 | 60 | 90 |
女 | 20 | 90 | 110 |
合计 | 50 | 150 | 200 |
经计算K2≈6.06,根据独立性检验的基本思想,约有{#blank#}1{#/blank#} (填百分数)的把握认为“性别与喜欢数学课之间有关系”.
Y1 | Y2 | 总计 | |
X1 | a | 21 | 73 |
X2 | 2 | 25 | 27 |
总计 | b | 46 |
选择“有水的地方” | 不选择“有水的地方” | 合计 | |
男 | 90 | 110 | 200 |
女 | 210 | 90 | 300 |
合计 | 300 | 200 | 500 |
(Ⅰ)据此样本,有多大的把握认为选择“有水的地方”与性别有关;
(Ⅱ)若以样本中各事件的频率作为概率估计全市“五一”所有出游旅客情况,现从该市的全体出游旅客(人数众多)中随机抽取3人,设3人中选择“有水的地方”的人数为随机变量X,求随机变量X的数学期望和方差.
附临界值表及参考公式:
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,n=a+b+c+d.
[0,15] |
[150,475] |
|
[0,75] |
64 |
16 |
(75,115] |
10 |
10 |
0.05 |
0.01 |
0.001 |
|
3.841 |
6.635 |
10.828 |
其中, , 经计算
则下列结论错误的是( )
试题篮