试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
直三棱柱ABC﹣A
1
B
1
C
1
中,∠ACB=90°,AC=AA
1
=a,则点A到平面A
1
BC的距离是( )
A、
a
B、
a
C、
a
D、
a
举一反三
已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是{#blank#}1{#/blank#}
半径分别为5,6的两个圆相交于A,B两点,AB=8,且两个圆所在平面相互垂直,则它们的圆心距为{#blank#}1{#/blank#}.
已知四棱椎P﹣ABCD的底面是边长为6的正方形,且该四棱椎的体积为96,则点P到面ABCD的距离是{#blank#}1{#/blank#}.
如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(Ⅱ)设PD=AD=2,求点D到面PBC的距离.
如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=1,AB=2.
已知正方体
的棱长为1,则平面
和平面
的距离为{#blank#}1{#/blank#}.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册