试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
安徽省濉溪二中等2018-2019学年高二下学期理数4月联考试卷
在三棱锥
中,
,
,
,则三棱锥
外接球的表面积为( )
A、
B、
C、
D、
举一反三
一个球的内接圆锥的最大体积与这个球的体积之比为{#blank#}1{#/blank#}
将边长为2的正方形ABCD沿对角线BD折起,使平面ABD⊥平面CBD,则三棱锥C﹣ABD的外接球表面积为( )
《九章算术》是我国数学史上堪与欧几里得《几何原本》相媲美的数学名著.其中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的四面体称之为鳖膈.已知直三棱柱A
1
B
1
C
1
﹣ABC中,AB⊥BC,AB=3,
,将直三棱柱沿一条棱和两个面的对角线分割为一个阳马和一个鳖膈,则鳖膈的体积与其外接球的体积之比为( )
已知矩形ABCD的顶点都在半径为R的球O的球面上,且AB=6,BC=2
,棱锥O﹣ABCD的体积为8
,则R={#blank#}1{#/blank#}.
长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( )
18世纪英国数学家辛卜森运用定积分,推导出了现在中学数学教材中柱、锥、球、台等几何体
的统一体积公式
(其中
,
,
,
分别为
的上底面面积、下底面面积、中截面面积和高),我们也称为“万能求积公式”.例如,已知球的半径为
, 可得该球的体积为
;已知正四棱锥的底面边长为
, 高为
, 可得该正四棱锥的体积为
.类似地,运用该公式求解下列问题:如图,已知球
的表面积为
, 若用距离球心
都为1cm的两个平行平面去截球
, 则夹在这两个平行平面之间的几何体
的体积为{#blank#}1{#/blank#}
.
返回首页
相关试卷
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
吉林省白城市第一中学2024-2025学年高二上学期12月期末考试数学试题
2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)数学试题
广东省江门市新会第一中学2024-2025学年高二上学期期末考试数学试题
浙江省宁波市镇海中学2024-2025学年高一上学期期末考试数学试卷
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册