题型:解答题
题类:模拟题
难易度:困难
上海市浦东新区2019届高三一模数学试题
已知平面直角坐标系
xOy , 在
x轴的正半轴上,依次取点
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%80%A6%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmo%3E%2A%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,并在第一象限内的抛物线
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
上依次取点
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%E2%80%A6%3C%2Fmo%3E%3C%2Fmath%3E)
,
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmo%3E%2A%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,使得
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmo%3E%E2%96%B3%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmi%3EB%3C%2Fmi%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmi%3Ek%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmo%3E%2A%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
都为等边三角形,其中
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmn%3E0%3C%2Fmn%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为坐标原点,设第
n个三角形的边长为
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
.
(2)、令
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E8%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,记
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
为数列
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
中落在区间
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmsup%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmsup%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
内的项的个数,设数列
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Et%3C%2Fmi%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
的前
m项和为
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3ES%3C%2Fmi%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,试问是否存在实数
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3E%CE%BB%3C%2Fmi%3E%3C%2Fmath%3E)
,使得
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsup%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%3E%CE%BB%3C%2Fmi%3E%3C%2Fmsup%3E%3Cmo%3E%E2%89%A4%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3ES%3C%2Fmi%3E%3Cmi%3Em%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
对任意
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3Em%3C%2Fmi%3E%3Cmo%3E%E2%88%88%3C%2Fmo%3E%3Cmsup%3E%3Cmi%3EN%3C%2Fmi%3E%3Cmo%3E%2A%3C%2Fmo%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
恒成立?若存在,求出
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3E%CE%BB%3C%2Fmi%3E%3C%2Fmath%3E)
的取值范围;若不存在,说明理由;
(3)、已知数列
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
满足:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsubsup%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsubsup%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,数列
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmrow%3E%3Cmo%3E%7B%3C%2Fmo%3E%3Cmrow%3E%3Cmsub%3E%3Cmi+mathvariant%3D%22script%22%3EC%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3Cmo%3E%7D%3C%2Fmo%3E%3C%2Fmrow%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
满足:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2C%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmfrac%3E%3Cmrow%3E%3Cmsqrt%3E%3Cmrow%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmsubsup%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsubsup%3E%3C%2Fmrow%3E%3C%2Fmsqrt%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,求证:
![](http://math.21cnjy.com/mml2svg?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Ef%3C%2Fmi%3E%3Cmrow%3E%3Cmo%3E%28%3C%2Fmo%3E%3Cmrow%3E%3Cmfrac%3E%3Cmi%3E%CF%80%3C%2Fmi%3E%3Cmrow%3E%3Cmsup%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmrow%3E%3Cmi%3En%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmsup%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmrow%3E%3Cmo%3E%29%3C%2Fmo%3E%3C%2Fmrow%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Ec%3C%2Fmi%3E%3Cmi%3En%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
.