题型:单选题 题类:常考题 难易度:容易
x | 3 | 4 | 5 | 6 | 7 | 8 |
y | 4.0 | 2.5 | ﹣0.5 | 0.5 | ﹣2.0 | ﹣3.0 |
表1
停车距离d(米) | (10,20] | (20,30] | (30,40] | (40,50] | (50,60] |
频数 | 26 | a | b | 8 | 2 |
表2
平均每毫升血液酒精含量x毫克 | 10 | 30 | 50 | 70 | 90 |
平均停车距离y米 | 30 | 50 | 60 | 70 | 90 |
已知表1数据的中位数估计值为26,回答以下问题.
(Ⅰ)求a,b的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表2的数据计算y关于x的回归方程 ;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:对于一组数据(x1 , y1),(x2 , y2),…,(xn , yn),其回归直线 的斜率和截距的最小二乘估计分别为 , .)
零件数 (个) |
|
|
|
|
|
|
加工时间 (小时) |
|
|
|
|
|
|
(Ⅰ)在给定的坐标系中划出散点图,并指出两个变量是正相关还是负相关;
(Ⅱ)求回归直线方程;
(Ⅲ)试预测加工 个零件所花费的时间?
附:对于一组数据 , ,……, ,其回归直线 的斜率和截距的最小二乘估计分别为:
.
x | 0 | 1 | 2 | 3 |
y | 1 | 3 | 5 | 7 |
试题篮