2022年苏科版初中数学七年级上册 6.1 线段、射线、直线 同步练习

修改时间:2022-10-31 浏览次数:45 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、夯实基础

  • 1. 经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,这一实际问题应用的数学知识是(       )
    A . 两点确定一条直线 B . 两点之间直线最短 C . 两点之间线段最短 D . 直线有两个端点
  • 2. 下列说法正确的是(    )
    A . 直线 B . 射线 C . 直线 与直线 是同一条直线 D . 射线 与射线 是同一条射线
  • 3. 在数轴上与表示-2的点的距离等于5的点所表示的数是(  )
    A . -7和3 B . 7和3 C . -7和-3 D . 7和-3
  • 4. 已知A,B两点都在数轴上,点A所表示的数是a,点B所表示的数是b,并且 , AB=3,则(     )
    A . b=2. B . b= C . b=2或b= D . b=
  • 5. 如图,在不添加字母的情况下,可以用字母表示出来的不同线段和射线有(  )

    A . 3条线段,3条射线 B . 6条线段,6条射线 C . 6条线段,4条射线 D . 3条线段,1条射线
  • 6. 在数轴上与-2所对应的点相距4个单位长度的点表示的数是
  • 7. 数轴上点A表示的数是﹣4,点B表示的数是3,那么AB=
  • 8. 数轴上A、B表示的数分别是 -2 和5,则A、B之间的距离是个单位长度.
  • 9. 点A、B在数轴上,若数轴上点A表示-1,且AB=2,则点B表示的数是
  • 10. 已知:四点A、B、C、D的位置如图所示,根据下列语句,画出图形.

    (1) 画直线AD、直线BC相交于点O;
    (2) 画射线BD、线段CD.
  • 11. 如图,点B在线段AD上,C是线段BD的中点,AD=10,BC=3.求线段CD、AB的长度.

  • 12. 如图,如果直线l上依次有3个点A,B,C,那么

    (1) 在直线l上共有多少条射线?多少条线段?
    (2) 在直线l上增加一个点,共增加了多少条射线?多少条线段?
    (3) 如果在直线l上增加到n个点,则共有多少条射线?多少条线段?

二、能力提优

  • 13. 下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线总是尽可能沿着线段AB架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为(    )
    A . ①② B . ①③ C . ②④ D . ③④
  • 14. 有三个点A,B,C,过其中每两个点画直线,可以画出直线(  )

    A . 1条 B . 2条 C . 1条或3条 D . 无法确定
  • 15. 如图一共有几条线段(  )

    A . 4条 B . 6条 C . 8条 D . 10条
  • 16. 如图,AB是一段高铁行驶路线图图中字母表示的5个点表示5个车站在这段路线上往返行车,需印制(   )种车票.

    A . 10 B . 11 C . 20 D . 22
  • 17. 杭衢高铁线上,要保证衢州、金华、义乌、诸暨、杭州每两个城市之间都有高铁可乘,需要印制不同的火车票(  )
    A . 20种 B . 15种 C . 10种 D . 5种
  • 18. 如图,射击运动员在瞄准时,总是用一只眼瞄准准星和目标,这种现象用数学知识解释为

  • 19. 如图,点在线段上,则图中共有条线段.

  • 20. 往返于A、B两地的客车,中途停靠四个站,共有种不同的票价,要准备种车票.
  • 21. 如图,数轴上有A、B、C三点,C为AB的中点,点B表示的数为2,点C表示的数为 ,则点A表示的数为.

  • 22. 如图,在数轴上,点 ,点 表示的数分别是 ,10,点 以2个单位/秒的速度从 出发沿数轴向右运动,同时点 以3个单位/秒的速度从点 出发沿数轴在 之间往返运动.当点 到达点 时,点 表示的数是

  • 23. 点 在数轴上分别表示有理数 两点之间的距离表示为 ,则在数轴上 两点之间的距离 .

    所以式子 的几何意义是数轴上表示 的点与表示2的点之间的距离.借助于数轴回答下列问题:

    ①数轴上表示2和5两点之间的距离是,数轴上表示1和 的两点之间的距离是.

    ②数轴上表示 的两点之间的距离表示为.

    ③数轴上表示 的点到表示1的点的距离与它到表示 的点的距离之和可表示为: .则 的最小值是.

    ④若 ,则

  • 24. 下列三个日常现象:

    ①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某名同学的跳远成绩.其中,可以用“两点之间线段最短”来解释的是 .(填序号)

  • 25. 已知数轴上A、B两点表示的数分别是-2和5,点P是在数轴上运动.请解答下列问题:
    (1) 当点P到A、B两点的距离相等时,写出点P表示的数.
    (2) 当点P到A、B两点的距离之和为15时,写出点P表示的数.
    (3) 当点P以每秒2个单位长度的速度从点O向左运动时,点A以每秒1个单位长度的速度向左运动,点B以每秒4个单位长度的速度向左运动,它们同时出发多长时间点P到A、B两点的距离相等?
  • 26. 如图,在数轴上A、B两点对应的数分别为10和16.点P从A点出发,以每秒1个单位长度的速度沿数轴正方向运动,同时点Q从原点O出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为ts.

    (1) 当0<t<5时,用含t的式子填空:BP=,AQ=
    (2) 当t=8时,求PQ的长;
    (3) 当PQ= AB时,求t的值.
  • 27. 【阅读】在数轴上,点A对应的有理数为a,点B对应的有理数为b,则以A、B为端点的线段的长度AB= , 以A、B为端点线段的中点对应数为

    【运用】如图,已知A、B、C 分别为数轴上的两点,点A对应的数为-8,点B对应的数为 4,点C对应的数为6,现有一动点P从点A出发,以每秒3个单位长度的速度沿数轴向右运动;同时,另一动点Q从点B出发,以每秒5个单位长度的速度沿数轴向左运动,设运动时间为t秒.

    (1) A,B两点间的距离AB=,线段AB的中点表示的数为
    (2) 用含t 的代数式表示:点P对应的数是,点Q对应的是,动点Q经过秒时运动到点A与点B的中点处;
    (3) 经过多少秒时,点P与点Q之间的距离恰好是点Q与点C之间距离的一半?

三、延伸拓展

  • 28. 平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于(  )

    A . 36 B . 37 C . 38 D . 39
  • 29. 对于数轴上给定的两点M,N(M在N的左侧),若数轴上存在点P,使得 ,则称点P为点M,N的“k和点”.例如,如图1,点M,N表示的数分别为0,2,点P表示的数为1,因为 ,所以点P是点M,N的“4和点”.

    (1) 如图2,已知点A表示的数为 ,点B表示的数为2.

    ①若点O表示的数为0,点O为点A,B的“k和点”,则k的值.

    ②若点C在线段AB上,且点C是点A,B的“5和点”,则点C表示的数为.

    ③若点D是点A,B的“k和点”,且 ,求k的值.

    (2) 数轴上点E表示的数为a,点F在点E的右侧, ,点T是点E,F的“6和点”,请求出点T表示的数t的值(用含a的代数式表示).
  • 30. 如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).

    (1) 当t=2时,点P表示的有理数为
    (2) 当点P与点B重合时t的值为
    (3) ①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)

    ②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)

    (4) 当点P表示的有理数与原点距离是2的单位长度时,t的值为

试题篮