试题 试卷
题型:解答题 题类:常考题 难易度:困难
广东省深圳市耀华实验学校2018-2019学年九年级上学期数学期中考试试卷
如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.
(1)求a,b的值,点B的坐标。
(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;
(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.
已知矩形ABCD中,AD=6,AB=12,P为边CD上的动点,过A点作AQ⊥AP,交CB的延长线于点Q,交AB于点E,若DP=x,CQ=y,
托勒密定理:
托勒密(Ptolemy)(公元90年~公元168年),希腊著名的天文学家,他的要著作《天文学大成》被后人称为“伟大的数学书”,托勒密有时把它叫作《数学文集》,托勒密从书中摘出并加以完善,得到了著名的托勒密(Ptolemy)定理.
圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.
已知:如图1,四边形ABCD内接于⊙O,
求证:AB•CD+BC•AD=AC•BD
下面是该结论的证明过程:
证明:如图2,作∠BAE=∠CAD,交BD于点E.
∵
∴∠ABE=∠ACD
∴△ABE∽△ACD
∴
∴AB•CD=AC•BE
∴∠ACB=∠ADE(依据1)
∵∠BAE=∠CAD
∴∠BAE+∠EAC=∠CAD+∠EAC
即∠BAC=∠EAD
∴△ABC∽△AED(依据2)
∴AD•BC=AC•ED
∴AB•CD+AD•BC=AC•(BE+ED)
∴AB•CD+AD•BC=AC•BD
任务:
试题篮