试题 试卷
题型:解答题 题类:常考题 难易度:普通
河北省沧州市普通高中2017-2018学年高三上学期文数教学质量监测试卷
(Ⅰ)证明:平面 平面 ;
(Ⅱ)求四棱锥 的体积.
如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为 .
在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.
(1)当CF=2,求证:B1F⊥平面ADF;
(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.
如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是{#blank#}1{#/blank#}.
试题篮