试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:
难易度:困难
贵州省毕节市织金县部分学校2024届高三下学期一模考试数学试题(一)
三等分角大约是在公元前五世纪由古希腊人提出来的,它和“立方倍积问题”“化圆为方问题”并称为“古代三大几何难题”.公元六世纪时,数学家帕普斯曾证明用一固定的双曲线可以解决“三等分角问题”.某同学在学习过程中,借用帕普斯的研究,使某锐角
的顶点与坐标原点
重合,点
在第四象限,且点
在双曲线
的一条渐近线上,而
与
在第一象限内交于点
.以点
为圆心,
为半径的圆与
在第四象限内交于点
, 设
的中点为
, 则
.若
, 则
的值为
.
举一反三
已知中心在原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F
1
、F
2
, 这两条曲线在第一象限的交点为P,△PF
1
F
2
是以PF
1
为底边的等腰三角形.若|PF
1
|=10,椭圆与双曲线的离心率分别为e
1
、e
2
, 则e
1
•e
2
的取值范围为{#blank#}1{#/blank#}.
已知椭圆
+
=1(a>b>0)的左右焦点F
1
, F
2
其离心率为e=
,点P为椭圆上的一个动点,△PF
1
F
2
内切圆面积的最大值为
.
已知双曲线
的一个焦点为
,椭圆
的焦距为
,则
( )
已知椭圆
的离心率为
,短轴长为2.
倾斜角为
的直线
l
经过双曲线
的左焦点
,交双曲线于
A
、
B
两点,线段
AB
的垂直平分线过右焦点
,则此双曲线的渐近线方程为( )
过椭圆
的中心作一直线交椭圆于
,
两点,
是椭圆的一个焦点,则
周长的最小值是{#blank#}1{#/blank#}.
返回首页
相关试卷
甘肃省白银市2024-2025学年高二上学期期末联考数学试卷
甘肃省张掖市 2024-2025学年高三上学期第一次联考数学试题
广西南宁市2024-2025学年高二上学期期末教学调研数学试卷
吉林省长春市长春汽车经济技术开发区第三中学2024-2025学年高二上学期期末考试数学试题
四川省泸县第二中学2024-2025学年高一上学期1月期末数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册