试题 试卷
题型:综合题 题类: 难易度:困难
广东省广州市海珠区第五中学2023-2024学年九年级上学期期中数学试题
②当取得最小值时,请判断与的位置关系,并说明理由.
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
①∠BAC=∠B1A1C1;
②AC=A1C1;
③OA=OA1;
④△ABC与△A1B1C1的面积相等,
其中正确的有( )
a
如图1,在边长为1的正方形网格中,连接格点 、 和 、 , 与 相交于点 ,求 的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点 、 ,可得 ,则 ,连接 ,那么 就变换到中 .
问题解决
试题篮