试题 试卷
题型:解答题 题类:常考题 难易度:普通
江苏省南京师大附中2020-2021学年高二上学期数学12月阶段检测试卷
(Ⅰ)证明:抛物线C在点N处的切线与AB平行;
(Ⅱ)是否存在实数k使 ,若存在,求k的值;若不存在,说明理由.
(Ⅰ)若椭圆V过点(﹣ , ),求椭圆C的方程;
(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .
(Ⅰ)求抛物线C1的方程;
(Ⅱ)已知椭圆C2: =1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为 .直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.
(Ⅰ)求 的取值范围;
(Ⅱ)若 的面积等于 ,求 的值.
试题篮