试题 试卷
题型:填空题 题类:模拟题 难易度:普通
2017年江苏省苏州市吴中区中考数学一模试卷
已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1( , 0)和An(bn , 0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1 , 0),其他依此类推.(1) 求a1、b1的值及抛物线y2的解析式;(2) 抛物线y3的顶点坐标为;依此类推第n条抛物线yn的顶点坐标为用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式(3) 探究下列结论:①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1等于多少? , An-1 An等于多少?②是否存在经过点A1(b1 , 0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.
如图,抛物线y=x2+x﹣与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.
如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
试题篮