试题 试卷
题型:综合题 题类:模拟题 难易度:普通
2017年湖南省娄底市中考数学模拟试卷(3月份)
已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.
平面直角坐标中,对称轴平行于y轴的抛物线经过原点O,其顶点坐标为(3,-);Rt△ABC的直角边BC在x轴上,直角顶点C的坐标为( , 0),且BC=5,AC=3(如图1). 图1 图2(1)求出该抛物线的解析式;(2)将Rt△ABC沿x轴向右平移,当点A落在(1)中所求抛物线上时,Rt△ABC停止移动.D(0,4)为y轴上一点,设点B的横坐标为m,△DAB的面积为s.①分别求出点B位于原点左侧、右侧(含原点O)时,s与m之间的函数关系式,并写出相应自变量m的取值范围(可在图1、图2中画出探求);②当点B位于原点左侧时,是否存在实数m,使得△DAB为直角三角形?若存在,直接写出m的值;若不存在,请说明理由.
已知:如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,O是坐标原点,已知点B的坐标是(3,0),tan∠OAC=3;
若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.
试题篮