试题 试卷
题型:解答题 题类:真题 难易度:普通
2014年高考理数真题试卷(重庆卷)
(I)求椭圆E的方程:
(Ⅱ)若A是椭圆E的左顶点,经过左焦点F的直线1与椭圆E交于C,D两点,求△OAD与△OAC的面积之差的绝对值的最大值.(0为坐标原点)
(Ⅰ)当直线l过右焦点F2时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,△AF1F2 , △BF1F2的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.
(Ⅰ)求曲线 的方程;
(Ⅱ)设过点 的直线 与曲线 交于不同的两点 ,求 面积最大时的直线 的方程.
(Ⅰ)求椭圆M的方程;
(Ⅱ)若 ,求 的最大值;
(Ⅲ)设 ,直线PA与椭圆M的另一个交点为C , 直线PB与椭圆M的另一个交点为D.若C , D和点 共线,求k.
(Ⅰ)求切线 , 的方程;
(Ⅱ)证明:线段 的中点 在抛物线 上;
(Ⅲ)设点 为圆 上的点,当 取最大值时,求点 的纵坐标.
试题篮