试题 试卷
题型:解答题 题类:常考题 难易度:普通
苹果品种
A
B
C
每辆汽车的装载重量(吨)
2.2
2.1
2
每吨苹果获利(百元)
6
8
5
(1)设用x辆车装运A种苹果,用y辆车装运B种苹果.根据上表提供的信息,求y与x之间的函数关系式,并求出x的取值范围;
(2)设此次外销活动的利润为W(百元),求W与x之间的函数关系式及最大利润,并制定相应的车辆分配方案.
周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y(千米)与x(小时)之间的函数图象如图所示,
(1)小明去基地乘车的平均速度是多少千米/小时,爸爸开车的平均速度应是多少千米/小时;
(2)求线段CD所表示的函数关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由;若不能,请算出12:00时他离家的路程.
一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图象如图.
(1)根据图象,直接写出y1、y2关于x的函数关系式;
(2)当两车相遇时,求此时客车行驶的时间;
(3)两车相距200千米时,求客车行驶的时间.
在平面直角坐标系xOy中,对“隔离直线”给出如下定义:
点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.
如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.
销售量n(件)
n=50﹣x
销售单价m(元/件)
当1≤x≤20时,m=20+ x
当21≤x≤30时,m=10+
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.
假设你是决策者,你认为应该选择哪种方案?并说明理由.
试题篮