试题 试卷
题型:单选题 题类:常考题 难易度:普通
x2﹣2x﹣8=x2﹣2•x•1+12﹣12﹣8=(x﹣1)2﹣9=(x﹣1)2﹣32=(x﹣1+3)(x﹣1﹣3)=(x+2)(x﹣4)
这种把多项式分解因式的方法叫做“配方法”,请你根据上面的材料解答下列问题:
解:x2+4x+5=x2+4x+22﹣22+5=(x+2)2+1
∵(x+2)2≥0
∴(x+2)2+1≥1
当(x+2)2=0时,(x+2)2+1的值最小,最小值是1,
∴x2+4x+5的最小值是1.
请你根据上述方法,解答下列各题:
(1)直接写出:(x﹣1)2﹣2的最小值为 .
(2)求出代数式x2﹣10x+33的最小值;
(3)若﹣x2+7x+y+12=0,求x+y的最小值.
【举例】已知点在函数图象上.点的“纵横值”为;函数图象上所有点的“纵横值”可以表示为 , 当时,的最大值为 , 所以函数的“最优纵横值”为7.
【问题】根据定义,解答下列问题:
试题篮