试题 试卷
题型:填空题 题类:模拟题 难易度:普通
如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD•BC,该结论称为射影定理.如图乙,在三棱锥A﹣BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关系是
六个面都是平行四边形的四棱柱称为平行六面体。如,在平行四边形 ABCD 中,有AC2+BD2=2(AB2+AD2) ,那么在图(2)的平行六面体 ABCD-A1B1C1D1 中有AC12+BD12+CA12+DB12 等于( )
12
①平行于同一直线的两条直线平行;
②垂直于同一直线的两条直线平行;
③如果一条直线与两条平行线中的一条垂直,则必与另一条垂直;
④如果一条直线与两条平行线中的一条相交,则必与另一条相交.
a5=2,则{an}的类似结论为( )
试题篮