试题 试卷
题型:填空题 题类:常考题 难易度:普通
如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为 .
如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB•AF=CB•CD;
(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为ycm2 .
①求y关于x的函数关系式.
②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.
请阅读下列材料,完成相应的任务:
下面是该定理的证明过程.
已知:如图1,四边形ABCD内接于⊙O.
求证:AB•DC+AD•BC=AC•BD
证明:如图2,作∠BAE=∠CAD,交BD于点E,
∵ = ,
∴∠ABE=∠ACD,
∴△ABE∽△ACD,
∴ ,
∴AB•DC=AC•BE,
∴∠ACB=∠ADE.( )※
∵∠BAE=∠CAD,
∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,
∴△ABC∽△AED,
∵AD•BC=AC•ED,
∴AB•DC+AD•BC=AC•BE+AC•ED=AC(BE+ED)=AC•BD.
试题篮