试题 试卷
题型:单选题 题类:常考题 难易度:普通
如图,利用一面墙,用80米长的篱笆围成一个矩形场地,墙长为30m,围成鸡场的最大面积为( )平方米.
如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.
(1)求经过点O、A、E三点的抛物线解析式;
(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;
(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.
如图1,抛物线y=﹣ x2+ x+2的图象与x轴交于点A、B,与y轴交于点C,连接BC,过点A作AD∥BC交抛物线的对称轴于点D.
①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣ 时,BP2=BO•BA;④三角形PAB面积的最小值为 .
初三(1)班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,则通过水槽的水的流量越大.为此,他们对水槽的横截面进行了如下探索:
试题篮