试题 试卷
题型:解答题 题类:常考题 难易度:普通
(1)如图1,直线a∥b∥c∥d,且a与b,c与d之间的距离均为1,b与c之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当∠DCB=120°时,求菱形的边长.
如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连结AO,如果AB=3,AO= , 那么AC的长等于( )
如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方形A′B′C′D′,则正方形ABCD与正方形A′B′C′D′重叠部分所形成的正八边形的边长为{#blank#}1{#/blank#} .
感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.
探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.
应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.
试题篮