试题 试卷
题型:单选题 题类:真题 难易度:普通
如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DE•CD,正确的有( )
如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则DE:AE的值是( )
小明对直角三角形很感兴趣. △ABC中,∠ACB=90°,D是AB上任意一点,连接DC,作DE⊥DC,EA⊥AC,DE与AE交于点E.请你跟着他一起解决下列问题: (1)如图1,若△ABC是等腰直角三角形,则DE,DC有什么数量关系?请给出证明. (2)如果换一个直角三角形,如图2,∠CBA=30°,则DE,DC又有什么数量关系?请给出证明. (3)由(1)、(2)这两种特殊情况,小明提出问题:如果直角三角形ABC中,BC=mAC,那DE, DC有什么数量关系?请给出证明.
如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列说法:①PA=PB,②∠1=∠2,③OP垂直平分AB,其中正确说法的序号是{#blank#}1{#/blank#}
试题篮