试题 试卷
题型:作图题 题类:真题 难易度:普通
图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:
(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;
(2)在图②中,以格点为顶点,AB为一边画一个正方形;
(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.(1)求A、B两点的坐标;(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;(3)当∆BDM为直角三角形时,请直接写出m的值.
参考公式:在平面直角坐标系中,若M(x1 , y1),N(x2 , y2),则M、N两点间的距离为MN=.
如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.
试题篮