试题 试卷
题型:证明题 题类:常考题 难易度:普通
甘肃省兰州市树人中学2019-2020学年八年级上学期数学第一次月考试卷
如图(1)∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
S四边形ADCB=
∴ 化简得:a2+b2=c2
请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
如图,梯形ABCD是由三个直角三角形拼成的,各直角边的长度如图所示。(1)请你运用两种方法计算梯形ABCD的面积;(2)根据(1)的计算,探索a,b,c三者之间的关系,并用式子表示出来。
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣A.
∵S四边形ADCB=S△ACD+S△ABC=b2+ab.
又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)
∴b2+ab=c2+a(b﹣a)
∴a2+b2=c2
解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2 .
2000多年来,人们对勾股定理的证明颇感兴趣,不但因为这个定理重要、基本,还因为这个定理贴近人们的生活实际,所以很多人都探讨、研究它的证明,新的证法不断出现.
下面的图形是传说中毕达哥拉斯的证明图形:
试题篮