试题 试卷
题型:综合题 题类:真题 难易度:普通
四川省遂宁市2019年中考数学试卷
如图,直线y=x+b(b>0)与x、y轴分别相交于A、B两点,点C(1,0),过点C作垂直于x轴的直线l,在直线l上取一点P,满足PA=PB,点A关于直线l的对称点为点D,以D为圆心,DP为半径作⊙D.
(1)直接写出点A、D的坐标;(用含b的式子表示)
(2)求点P的坐标;
(3)试说明:直线BP与⊙D相切.
如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y= 上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P作x轴平行线分别交l1 , l2于M,N两点.
如图,已知抛物线y=ax2+bx+c(a≠0)的图象的顶点坐标是(2,1),并且经过点(4,2),直线y= x+1与抛物线交于B,D两点,以BD为直径作圆,圆心为点C,圆C与直线m交于对称轴右侧的点M(t,1),直线m上每一点的纵坐标都等于1.
如图1,圆的概念:在平面内,线段PA绕它固定的一个端点P旋转一周,另一个端点A所形成的图形叫做圆.就是说,到某个定点等于定长的所有点在同一个圆上,圆心在P(a,b),半径为r的圆的方程可以写为:(x﹣a)2+(y﹣b)2=r2 , 如:圆心在P(2,﹣1),半径为5的圆方程为:(x﹣2)2+(y+1)2=25
试题篮