试题 试卷
题型:综合题 题类:常考题 难易度:普通
浙教版2019中考数学复习专题之二次函数综合与应用
如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.
如图,直线y=﹣x+3与x轴交于点C,与y轴交于点A,点B的坐标为(2,3)抛物线y=﹣x2+bx+c经过A、C两点.
(1)求抛物线的解析式,并验证点B是否在抛物线上;
(2)作BD⊥OC,垂足为D,连接AB,E为y轴左侧抛物线点,当△EAB与△EBD的面积相等时,求点E的坐标;
(3)点P在直线AC上,点Q在抛物线y=﹣x2+bx+c上,是否存在P、Q,使以A、B、P、Q为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
已知:抛物线y=ax2+bx+c(a≠0)经过点A(1,0),B(3,0),C(0,﹣3).
(1)求抛物线的表达式及顶点D的坐标;
(2)如图①,点P是直线BC上方抛物线上一动点,过点P作y轴的平行线,交直线BC于点E.是否存在一点P,使线段PE的长最大?若存在,求出PE长的最大值;若不存在,请说明理由;
(3)如图②,过点A作y轴的平行线,交直线BC于点F,连接DA、DB.四边形OAFC沿射线CB方向运动,速度为每秒1个单位长度,运动时间为t秒,当点C与点B重合时立即停止运动.设运动过程中四边形OAFC与四边形ADBF重叠部分面积为S,请求出S与t的函数关系式.
试题篮