试题 试卷
题型:单选题 题类:常考题 难易度:普通
安徽省铜陵市2018-2019学年八年级下学期数学期末考试试卷
已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.
求证:四边形ABCD为平行四边形.
已知:如图,△ABC中,点D、E分别为BC、AC边中点,连接AD,连接DE,过A点作AF∥BC,交DE的延长线于F.连接CF,(1)求证:四边形ADCF是平行四边形;(2)对△ABC添加一个条件 ,使得四边形ADCF是矩形,并进行证明;(3)在(2)的基础上对△ABC再添加一个条件 ,使得四边形ADCF是正方形,不必证明.
如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.
问题情境:在数学活动课上,我们给出如下定义:顺次连按任意一个四边形各边中点所得的四边形叫中点四边形.如图(1),在四边形ABCD中,点E , F , G , H分别为边AB , BC , CD , DA的中点.试说明中点四边形EFGH是平行四边形.
探究展示:勤奋小组的解题思路:
反思交流:
试题篮