试题 试卷
题型:解答题 题类:常考题 难易度:普通
安徽省定远重点中学2018-2019学年高二上学期理数期中考试试卷
求证:
(Ⅰ)求椭圆E的方程;
(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且l与直线x=﹣4相交于点S.
试问:在x轴上是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.
(Ⅰ)求椭圆C2的方程;
(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.
(ⅰ)若直线NA、NB的斜率分别为k1、k2 , 证明:k1+k2为定值.
(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.
试题篮