修改时间:2021-05-20 浏览次数:987 类型:期中考试 编辑
查看解析 收藏 纠错
+选题
如图,已知两个正四棱锥P﹣ABCD与Q﹣ABCD的高分别为2和4,AB=4,E、F分别为PC、AQ的中点,则直线EF与平面PBQ所成角的正弦值为.
在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1 , 连接AP交棱CC1于点D.以A1为坐标原点建立空间直角坐标系,如图所示.
如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)求直线AB与平面CBF所成角的大小;
(Ⅲ)当AD的长为何值时,平面DFC与平面FCB所成的锐二面角的大小为60°?
试题篮