初中数学浙教版九年级上册专题复习:概率的简单应用

修改时间:2021-10-20 浏览次数:99 类型:复习试卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在“Ⅱ”区域内的概率是(   )

    A . B . C . D .
  • 2. 某班共有40名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学回答问题,则习惯用左手写字的同学被选中的概率是(  )
    A . 0 B . C . D . 1
  • 3. 小亮、小莹、大刚三位同学随机站成一排合影留念,小亮恰好站在中间的概率是( )
    A . B . C . D .  
  • 4. 一个密码箱的密码,每个数位上的数都是从0到9的自然数.若要使不知道密码的人一次就拨对密码的概率小于 ,则密码的位数至少是( )
    A . 3位 B . 4位 C . 5位 D . 6位
  • 5. 如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E出口落出的概率是(   )

    A . B . C . D .
  • 6. 某商场开业举行庆祝活动,凡是到商场的人均可参加“意外惊喜”的游戏,游戏规则为:一个袋中装有白球和红球共 个(些小球除颜色外都相同),任意摸出一个球,如果摸到红球就可获得商场免费提供的一份礼品.据统计,当天参加活动的人数约 人,商场发放了 份礼品,试估计袋中红球的个数为(    )
    A . B . C . D .
  • 7. 某路口交通信号灯的时间设置为:红灯亮25秒,绿灯亮32秒,黄灯亮3秒.当人或车随机经过该路口时,遇到绿灯的概率为(   )
    A . B . C . D .
  • 8. 某校为了解本校九年级男生在“新冠肺炎”疫情期间每天在家进行锻炼的时长情况,随机抽查了100名九年级男学生进行问卷调查,将收集到的数据整理如下:

    时间x(分)

    x<10

    10≤x<20

    20≤x<30

    30≤x<40

    40≤x<50

    50≤x<60

    x>60

    人数

    1

    8

    10

    34

    22

    15

    10

    根据以上统计结果,抽查该校一名九年级男生,估计他每天进行锻炼的时间不少于40分钟的概率是( )

    A . 0.22 B . 0.53 C . 0.47 D . 0.81
  • 9. 甲、乙两所医院分别有一男一女共 名医护人员支援湖北武汉抗击疫情,若从甲、乙两医院支援的医护人员中分别随机选 名,则所选的 名医护人员性别相同的概率是(  )
    A . B . C . D .
  • 10. 甲、乙两人做掷骰子游戏(掷1枚骰子),下面(       )游戏规则是公平的。
    A . 小于3的甲赢,大于3的乙赢 B . 质数甲赢,合数乙赢 C . 奇数甲赢,偶数乙赢 D . 大于3的甲赢,小于3的乙赢

二、填空题

  • 11. 闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是.
  • 12. 为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为
  • 13. 如图,是一个面积为4cm2正方形微信二维码。小明利用所学概率知识估算二维码中黑色部分的面积,在正方形区域内随机掷点,经过大量重复试验,发现点落人黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为

  • 14. 提出问题:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需要摸出多少个小球?

    建立模型:为解决上面的“问题”,我们先建立并研究下面从口袋中摸球的数学模型:

    (1) 在不透明的口袋中装有红、黄、蓝三种颜色的小球各50个(除颜色外完全相同),现在要确保从口袋中随机摸出的小球至少有4个是同色的,则最少需要摸出多少个小球?为了找到解决问题的办法,我们可以把上述问题简单化:

    ①我们首先考虑最简单的情况:既要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?

    假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需要再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需要摸出小数的个数是:1+3=4;

    ②若要确保从口袋中摸出的小球至少有3个是同色的呢?

    我们只需要在①的基础上,再从袋中摸出3个小球,就可以确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7

    ③若要确保从口袋中摸出的小球至少有4个小球同色,即最少需要摸出小球的个数是:1+3×3=10

    ④若要确保从口袋中摸出的小球至少有a个是同色的呢?即最少需要摸出小球的个数是

    (2) 模型拓展一:在不透明的口袋中装有红、黄、蓝、白、绿、紫六种颜色的小球各50个(除颜色外完全相同),现在从袋中随机摸球:

    ①若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是

    ②若要确保摸出的小球至少有12个同色,则最少需摸出小球的个数是

    ③若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是

    (3) 模型拓展二:在不透明口袋中装有n中颜色的小球各50个(除颜色外完全相同),现从袋中随机魔球:

    ①若要确保摸出的小球至少有3个同色,则最少需摸出小球的个数是

    ②若要确保摸出的小球至少有a个同色(a<50),则最少需摸出小球的个数是

    (4) 问题解决:在不透明口袋中放入16种颜色的小球(小球除颜色外完全相同)各50个,现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出小球的个数是
  • 15. 已知A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.现制定这样一个游戏规则:随机地分别从A,B中各抽取一张,若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.这样的游戏规则对有利.
  • 16. 在如图所示的图案中,黑白两色的直角三角形都全等.甲、乙两人将它作为一个游戏盘,游戏规则是:按一定距离向盘中投镖一次,扎在黑色区域为甲胜,扎在白色区域为乙胜.这个游戏公平吗?请填上你的正确判断:

三、解答题

  • 17. 下面第一排表示十张扑克牌的不同情况,任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.

  • 18. 某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:最后一个3分球由甲、乙中谁来投,获胜的机会更大?请简要说说你的理由.
  • 19. 如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在红色区域和白色区域的概率分别是多少?

    亮亮的做法是:因为指针不是落在红色区域就是落在白色区域,落在红色区域和白色区域的概率相

    等,所以 (落在红色区域) (落在白色区域) .

    你认为亮亮做得对吗?说说你的理由,你是怎样做的?

  • 20. 小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云冈石窟和五台山.他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到的两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游.请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用H,P,Y,W表示).

  • 21. 某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会.抽奖规则如下:在抽奖箱内,有100个牌子,分别写有1,2,3,…,100共100个数字,抽到末位数是5的可获20元购物券,抽到数字是88的可获200元购物券,抽到66或99的可获100元购物券.某顾客购物用了130元,他获得购物券的概率是多少?他获得20元、100元、200元购物券的概率分别是多少?
  • 22. 在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1,现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.
    (1) 第一次抽到写有负数的卡片的概率是
    (2) 用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.
  • 23. 不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,已知从袋中任意摸出一个是红球的概率为
    (1) 从袋中任意摸出一个是蓝球的概率是多少?
    (2) 求袋中黄球的个数.
  • 24. 如图是我们熟悉的电路图,其中L1、L2、L3代表灯泡,K1、K2、K3、K4代表开关,R代表电阻.

    (1) 合上一个开关,有两盏灯亮的概率是
    (2) 合上两个开关,有两盏灯亮的概率是多少?请结合树状图或表格解决问题.
  • 25. 在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为x,小红在剩下的3个小球中随机摸出一个小球,记下数字为y,这样确定了点M的坐标(x,y)
    (1) 画树状图或列表,写出点M所有可能的坐标;
    (2) 小明和小红约定做一个游戏,其规则为:若M在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由。
  • 26. 阅读对话,解答问题.

    (1) 分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
    (2) 小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.

试题篮