初中数学苏科版九年级上册1.4 用一元二次方程解决问题 同步练习

修改时间:2021-06-23 浏览次数:186 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 某商店今年1月份的销售额是1万元,3月份的销售额是1.21万元,从1月份到3月份,该店销售额平均每月的增长率是(   )
    A . 20% B . 15% C . 10% D . 5%
  • 2. 疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产量提高到121万只,该厂二、三月份的月平均增长率为(   )
    A . 12% B . 20% C . 21% D . 10%
  • 3. 某班学生毕业时都将自己的照片向全班其他学生各送一张以作留念,全班共送出1056张照片.如果全班有x名同学,根据题意,列出的方程为(   )
    A . B . C . D .
  • 4. 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,要想在2天之后涨回到原价,试估计平均每天的涨幅(   )
    A . 一定为5% B . 在5%~6%之间 C . 在4%~5%之间 D . 3%~4%之间
  • 5. 某商场销售一批衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,商场采取降价措施,假设一定范围内,衬衫价格每降低1元,商场平均每天可多售出2件.如果销售这批衬衫每天盈利1250元,设衬衫单价降了x元,根据题意,可列方程(   )
    A . B . C . D .
  • 6. 某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为 (   )
    A . 162(1﹣x)2=200 B . 200(1+x)2=162 C . 162(1+x)2=200 D . 200(1﹣x)2=162
  • 7. 某厂一月份生产产品150台,计划二、三月份共生产450台,设二、三月平均每月增长率为x,根据题意列出方程是(   )
    A . B . C . D .
  • 8. 沭阳县近年来大力发展花木产业,某花木生产企业在两年内的销售额从200万元增加到800万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为(   )
    A . 200(1+2x)=800 B . 2×200(1+x)=800 C . 200(1+x2)=800 D . 200(1+x)2=800
  • 9. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是(   )
    A . 50(1+x)²=182 B . 50+50(1+x)+50(1+x)²=182 C . 50(1+2x)=182 D . 50+50(1+x)+550(1+x)²=182
  • 10. 某品牌手机三月份销售400万部,四月份、五月份的销售量连续增长,五月份的销售量达到900万部,求月平均增长率.设月平均增长率为 ,根据题意列方程为(   )
    A . B . C . D .

二、填空题

  • 11. 某商店将进价为30元/件的文化衫以50元/件售出,每天可卖200件,在换季时期,预计单价每降低1元,每天可多卖10 件,则销售单价定为多少元时,商店可获利3000元?设销售单价定为x元/件,可列方程.(方程不需化简)
  • 12. 某超市九月份的营业额为50万元,十一月份的营业额为72万元.则每月营业额的平均增长率为.
  • 13. 一个两位数,个位数字比十位数字大3,个位数的平方恰好等于这个两位数,这个两位数是.
  • 14. 某品牌的手机经过四、五月份连续两次降价,每部售价由2500元降到了1600元,则平均每月降价的百分率是.
  • 15. 某超市一月份的营业额为200万元,已知二月和三月的总营业额为1000万元,如果平均每月增长率为x,则由题意列方程应为.
  • 16. 某型号的手机连续两次降价,单价由原来的5200元降到了1300元.设平均每次降价的百分率为x,则可以列出的一元二次方程是.
  • 17. 一批上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价后的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速出售,设第一次降价的百分率为x,则可列方程为.
  • 18. 某种商品原价是100元,经两次降价后的价格是64元,则平均每次降价的百分率为
  • 19. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为.
  • 20. 一个两位数等于它的个位数字的平方,且个位数字比十位数字大 ,则这个两位数为.

三、解答题

  • 21. 工厂2018年共生产4000万件电子产品,该年还生产了A、B、C三种型号的电池,其数量分别为400万块、800万块、1600万块,这些电池只配装了该年生产的部分电子产品(每一件电子产品配一块电池),剩余电子产品所需电池由其他工厂供给,从2019年起,该工厂逐年扩大这三种类型的电池产量.2019年、2020年这两年,A型电池每年产量的增长率相同,B型电池每年产量的增长率比A型电池每年产量的增长率小1,C型电池每年产量的增长率是A型电池每年产量的增长率的一半,已知该工厂2020年生产的三种类型的电池恰好配装了该年生产的所有电子产品,且该年生产的电子产品的数量是2018年生产的电子产品的数量的3.3倍,求A型电池每年产量的增长率.
  • 22. 某工厂工业废气年排放量为300万立方米,为改善城市环境质量,决定在两年内使废气年排放量减少到144万立方米,如果第二年废气减少的百分率是第一年废气减少的百分率的2倍,那么这两年每年废气减少的百分率各是多少?
  • 23. 某公司在商场购买某种比赛服饰,商店经理给出了如下优惠条件:如果一次性购买10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降价2元,但单价不得低于50元,按此优惠条件,该公司一次性购买这种比赛服装付了1200元,请问购买了多少件这种比赛服饰?
  • 24. 某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?
  • 25. 一个两位数的个位数字与十位数字的和为9,并且个位数字与十位数字的平方和为45,求这个两位数。
  • 26. 某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10 000元的销售利润,这种衬衫每件的价格应定为多少元?
  • 27. 甲、乙两家某商品专卖店一月份销售额分别为10万元和15万元,三月份销售额甲店比乙店多10万元.已知甲店二、三月份销售额的月平均增长率是乙店二、三月份月平均增长率的2倍,求甲店、乙店这两个月的月平均增长率各是多少?
  • 28. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.

    ① 若该公司当月卖出3部汽车,求每部汽车的进价是多少万元;

    ② 如果汽车的销售价位28万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)

  • 29. 某工厂1月份的产值是25万元,计划3月份的产值达到36万元,那么这家工厂2月、3月这两个月产值的月平均的增长率是多少?
  • 30. 某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.若商场获得了10000元销售利润,求该玩具销售单价应定为多少元?
  • 31. 随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2016年底拥有家庭轿车640辆,2018年底家庭轿车的拥有量达到1000辆.若该小区2016年底到2019年底家庭轿车拥有量的年平均增长率都相同,求该小区到2019年底家庭轿车将达到多少辆?
  • 32. 随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增加到2015年的392万元.求该购物网站平均每年销售额增长的百分率.
  • 33. 某商店购进一批旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个.商店为了适当增加销量,第二周决定降价销售.根据市场调研,单价每降低1元,一周可比原来多售出50个,这样两周共获利1400元,第二周每个纪念品的销售价格为多少元?
  • 34. 春季是流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?
  • 35. 某企业2016年盈利1500万元,2018年盈利2160万元.求该企业每年盈利的年平均增长率.若该企业盈利的年增长率继续保持不变,预计2019年盈利多少万元?
  • 36. 某超市准备进一批季节性小家电,每个进价是 元,经市场预测:销售价定为 元,可售出 个,定价每增加 元,销售量将减少 个.超市若要保证获得利润 元,同时又要使顾客得到实惠,那么每个定价应该是多少元?
  • 37. 某商场经营某种品牌的玩具,购进时的单价是 元,根据市场调查发现:在一段时间内,当销售单价是 元时,销售量是 件,而销售单价每涨 元,就会少售出 件玩具.若商场要获得 元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?
  • 38. 某西瓜经营户以2元/kg的价格购进一批小型西瓜,以3元/kg的价格出售,每天可售出200kg.为促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/kg,每天可多售出40kg.另外,每天的房租等固定成本共24元,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
  • 39. 某体育用品商店销售一批运动鞋,零售价每双240元,如果一次购买超过10双,那么每多买一双,所购运动鞋的单价降低6元,但单价不能低于150元.一位顾客购买这种运动鞋支付了3600元,这名顾客买了多少双鞋?
  • 40. 我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?

试题篮