江苏省南通市如皋市、崇川区2020年数学中考一模试卷

修改时间:2024-07-13 浏览次数:358 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题。

  • 1. 如果温度上升10℃记作+10℃,那么温度下降5℃记作(   )
    A . +10℃ B . ﹣10℃ C . +5℃ D . ﹣5℃
  • 2. 据报道,国庆70周年阅兵是进入新时代的首次国庆阅兵,是共和国武装力量全面重塑后的首次整体亮相,阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580台套,是近几次阅兵中规模最大的一次.将1.5万人用科学记数法表示为( )
    A . 150×102 B . 15×103 C . 1.5×104 D . 0.15×105
  • 3. 如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A放到小正方体B的正上方,则它的(   )

    A . 主视图会发生改变 B . 俯视图会发生改变 C . 左视图会发生改变 D . 三种视图都会发生改变
  • 4.

    如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为(  )

    A . 2 B . 3 C . 5 D . 7
  • 5. 如图,一辆小车沿倾斜角为α的斜坡向上行驶13m,若sinα ,则小车上升的高度是( )

    A . 5m B . 6m C . 6.5m D . 12m
  • 6. 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(    )

    A . 众数 B . 方差 C . 平均数 D . 中位数
  • 7. 如图,AB是⊙O的直径,O是圆心,弦CD⊥AB于E,AB=10,CD=8,则OE的长为( )

    A . 2 B . 3 C . 4 D . 5
  • 8. 已知方程x2﹣3x+1=0的两个根分别是x1 , x2 , 则x12x2+x1x22的值为( )
    A . ﹣6 B . ﹣3 C . 3 D . 6
  • 9. 一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为(  )

    A . 5L B . 3.75L C . 2.5L D . 1.25L
  • 10. 如图,矩形ABCD中,AB=2,AD=3.E,F分别是AD,CD上的动点,EF=2.Q是EF的中点,P为BC上的动点,连接AP,PQ.则AP+PQ的最小值等于( )

    A . 2 B . 3 C . 4 D . 5

二、填空题。

三、解答题

  • 19. 如下:
    (1) 解不等式组 并写出它的所有整数解.
    (2) 先化简,再求值:(2x+1)2﹣2(x﹣1)(x+3)﹣2,其中x .
  • 20. 如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长。为什么?

  • 21. 某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?
  • 22. 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同.顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.
    (1) 如果小芳只有一次摸球机会,那么小芳获得奖品的概率为
    (2) 如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.
  • 23. 某校为了解七、八年级学生一分钟跳绳情况,从这两个年级随机抽取 名学生进行测试,并对测试成绩(一分钟跳绳次数)进行整理、描述和分析,下面给出了部分信息:

    七年级学生一分钟跳绳成绩频数分布直方图

    七,八年级学生一分钟跳绳成绩分析表

    七年级学生一分钟跳绳成绩(数据分7组: )在 这一组的是:

    100  101  102  103  105  106  108  109  109  110  110  111  112  113  115  115  115  116  117  119

    根据以上信息,回答下列问题:

    (1) 表中
    (2) 在这次测试中,七年级甲同学的成绩122次,八年级乙同学的成绩125,他们的测试成绩,在各自年级所抽取的50名同学中,排名更靠前的是(填“甲”或“乙”),理由是.
    (3) 该校七年级共有500名学生,估计一分钟跳绳不低于116次的有多少人?
  • 24. 如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径.

    (1) 若∠BAC=25°,求∠P的度数;
    (2) 若∠P=60°,PA=2 ,求AC的长.
  • 25. 已知抛物线y=﹣x2+2bx+1﹣2b(b为常数).
    (1) 若点(2,5)在该抛物线上,求b的值;
    (2) 若该抛物线的顶点坐标是(m,n),求n关于m的函数解析式;
    (3) 若抛物线与x轴交点之间的距离大于4,求b的取值范围.
  • 26. 如图,△ABC中,P'是边AB上一点,四边形P'Q'M'N'是正方形,点Q', 在边BC上,点N'在△ABC内.连接BN',并延长交AC于点N,NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.

    (1) 求证:四边形PQMN为正方形;
    (2) 若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.
  • 27. 定义:对于函数y,我们称函数叫做函数|y|的正值函数.例如:函数y 的正值函数为y=| |.如图,曲线y (x>0)请你在图中画出y=x+3的正值函数的图象.

    (1) 写出y=x+3的正值函数的两条性质;
    (2) y=x+3的正值函数的图象与x轴、y轴、曲线y (x>0)的交点分别是A,B,C.点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与正值函数图象交于另一点E,与曲线交于点P.

    ①试求△PAD的面积的最大值;

    ②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.

试题篮