浙江省绍兴市诸暨市2018-2019学年八年级下学期数学期末考试卷

修改时间:2024-07-13 浏览次数:443 类型:期末考试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题(本大题有10小题,每小题3分,共30分.)

  • 1. 若二次根式 有意义,则x的取值范围是(    )
    A . x<4 B . x>4 C . x≥4 D . x≤4
  • 2. 下列图形中,既是轴对称图形又是中心对称图形的是(  )

    A . B . C . D .
  • 3. 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是(    )
    A . 9分 B . 8分 C . 7分 D . 6分
  • 4. 若关于x的一元二次方程x2﹣3x+m=0有解,则m的值可为(    )
    A . 2 B . 3 C . 4 D . 5
  • 5. 下列各式中计算正确的是(    )
    A . + B .   C . D . + 2=3+2=5
  • 6. 已知:如图,M是正方形ABCD内的一点,且MC=MD=AD,则∠AMB的度数为(    )

    A . 120° B . 135° C . 145° D . 150°
  • 7. 下图入口处进入,最后到达的是( )

    A . B . C . D .
  • 8. 如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2 . 若设AD=xm,则可列方程(    )

    A . (50﹣ )x=900 B . (60﹣x)x=900    C . (50﹣x)x=900 D . (40﹣x)x=900
  • 9. 如图1是由5个全等的边长为1的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是5的大正方形,则(    )

    A . 甲、乙都可以 B . 甲可以,乙不可以    C . 甲不可以,乙可以 D . 甲、乙都不可以
  • 10. 已知:如图,在菱形OABC中,OC=8,∠AOC=60°,OA落在x轴正半轴上,点D是OC边上的一点(不与端点O,C重合),过点D作DE⊥AB于点E,若点D,E都在反比例函数y= (x>0)图象上,则k的值为(    )

    A . 8 B . 9 C . 9 D . 16

二、填空题(本大题有10小题,每小题3分,共30分)

  • 11. 计算:
  • 12. 在反比例函数 的图象每一条曲线上,y都随x的增大而减小,则m的取值范围是
  • 13. 用反证法证明“若|a|<2,则a2<4”时,应假设
  • 14. 甲,乙,丙,丁四人参加射击测试,每人10次射击的平均环数都为8.9环,各自的方差见如下表格

    方差

    0.293

    0.375

    0.362

    0.398

    则四个人中成绩最稳定的是

  • 15. 一个多边形的每个内角都等于150°,则这个多边形是边形.
  • 16. 如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60,∠BAC=80°,则∠1的度数为

  • 17. 三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是
  • 18. 为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过分钟后,学生才能回到教室.

  • 19. 如图,在矩形ABCD内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点E,F分别在边AD,BC上,小长方形的长与宽的比值为4,则 的值为

  • 20. 在矩形ABCD中,AB=3,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点B的对应点为点F.
    (1) 若点F恰好落在AD边上,则AD=
    (2) 延长AF交直线CD于点P,已知 ,则AD=

三、解答题(本大题有5小题,第21小题6分,第22~24小题8分,第25小题10分,共40分.)

  • 21.     
    (1) 计算:(2﹣ )(2+ )﹣( 2
    (2) 解方程:x2﹣4x+1=0.
  • 22. 某中学开展的“好书伴我成长”读书活动中,为了解七年级600名学生读书情况,随机调查了七年级50名学生读书的册数,统计数据如下表所示:

    册数

    0

    1

    2

    3

    4

    人数

    3

    13

    16

    17

    1

    (1) 这50个样本数据的众数为、中位数为
    (2) 求这50个样本数据的平均数;
    (3) 根据样本数据,估计该校七年级600名学生在本次活动中读书多于2册的人数.
  • 23. 如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.

    (1) 求证:四边形AFCE是平行四边形.
    (2) 若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.
  • 24. 如图,平面直角坐标系xOy中,函数y= (x<0)的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).

    (1) 求k,m的值.
    (2) 点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y= (x<0)的图象于点D,设P(n,﹣2n).

    ①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由

    ②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.

  • 25. 如图,以矩形OABC的顶点O为坐标原点,OA所在直线为x轴,OC所在直线为y轴,建立平面直角坐标系,已知OA=8,OC=10,将矩形OABC绕点O逆时针方向旋转α(0<α<180°)得到矩形ODEF.

    (1) 当点E恰好落在y轴上时,如图1,求点E的坐标.
    (2) 连结AC,当点D恰好落在对角线AC上时,如图2,连结EC,EO,

    ①求证:△ECD≌△ODC;

    ②求点E的坐标.

    (3) 在旋转过程中,点M是直线OD与直线BC的交点,点N是直线EF与直线BC的交点,若BM= BN,请直接写出点N的坐标.

试题篮