试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:容易
三棱锥P-ABC中,
是底面,
且这四个顶点都在半径为2的球面上,PA=2PB,则这个三棱锥的三个侧棱长的和的最大值为( )
A、
16
B、
C、
D、
32
举一反三
从空间一点O出发的四条射线两两所成的角都是θ,则θ一定是
设2<x<5,则函数
的最大值是{#blank#}1{#/blank#}
下列函数中,最小值为2的函数是( )
若正数
,
满足
,则
的最小值为( )
利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为( )
若直线
始终平分圆
的周长,则
的最小值为{#blank#}1{#/blank#}
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册