试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:容易
设F
1
和F
2
为双曲线
(a>0.b>0)的两个焦点, 若点F
1
, F
2
和点P(0,2b)是正三角形的三个顶点,则双曲线的离心率为( )。
A、
B、
C、
2
D、
3
举一反三
已知双曲线
的两条渐近线均和圆
相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( )
已知双曲线
的离心率e=2,则其渐近线方程为{#blank#}1{#/blank#}
已知双曲线标准方程为:
=1(a>0,b>0),一条渐近线方程y=3x,则双曲线的离心率是{#blank#}1{#/blank#}.
已知双曲线E:
=1(a>0,b>0)的右焦点为F(3,0),过点F的直线交双曲线于A,B两点,若AB的中点坐标为N(﹣12,﹣15),则E的方程为( )
若双曲线
的焦距为
,则该双曲线的离心率为( )
已知双曲线
的两条渐近线互相垂直,则离心率
( )
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册