试题 试卷
题型:解答题 题类: 难易度:普通
浙江省(杭州二中、绍兴一中、温州中学、金华一中、衢州二中)五校联考2024届高考数学模拟卷
甲同学根据样本均值估计总体均值的思想,用估计总体的均值,因此 , 得 , 故可用作为N的估计.
乙同学对此提出异议,认为这种方法可能出现的无意义结果.例如,当 , 时,若 , , , 则 , 此时.
为创建全国文明城市,某区向各事业行政单位征集“文明过马路”义务督导员.从符合条件的600名志愿者中随机抽取100名,按年龄作分组如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下频率分布直方图.
(Ⅰ)求图中x的值,并根据频率分布直方图统计这600名志愿者中年龄在[30.40)的人数;
(Ⅱ)在抽取的100名志愿者中按年龄分层抽取10名参加区电视台“文明伴你行”节目录制,再从这10名志愿者中随机选取3名到现场分享劝导制止行人闯红灯的经历,记这3名志愿者中年龄不低于35岁的人数为X,求X的分布列及数学期望.
(Ⅰ)从这10名选手中选派2人参加100米比赛,求所选派选手为不同年级的概率;
(Ⅱ)若从这l0名选手中选派4人参加4×100米接力比赛,且所选派的4人中,高一、高二年级的人数之和不超过高三年级的人数,记此时选派的高三年级的人数为ξ,求随机变量ξ的分布列和数学期望.
求EX1 , EX2 , DX1 , DX2 , 并分析两门火炮的优劣.
试题篮