试题 试卷
题型:解答题 题类: 难易度:困难
浙江省宁波市镇海区镇海区仁爱中学2023-2024学年九年级上学期期中数学试题
已知,如图,过点E(0,-1)作平行于轴的直线 , 抛物线上的两点A、B的横坐标分别为1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF,DF.(1)求点A,B,F的坐标;(2)求证:;(3)点是抛物线对称轴右侧图象上的一动点,过点P作交X轴于点Q,是否存在点P使得与相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
如图在直角△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为( )
如图(1):已知在△ABC中,AB=AC,P是底边BC上一点,作PD⊥AB于D,PE⊥AC于E,BF⊥AC于F,求证:PD+PE=BF.
【思路梳理】:如图(2):连接AP,必有S△APB+S△APC=S△ABC , 因为△ABP、△ACP和△ABC的底相等,所以三条高PD、PE和BF满足关系:PD+PE=BF.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
试题篮