试题 试卷
题型:解答题 题类:模拟题 难易度:普通
广东省佛山市南海区2017年高考理数模拟试卷
(Ⅰ)证明:AC是圆O的切线;
(Ⅱ)设AC与圆O的切点为F,求证:EF∥AO.
如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA=2 ,PC=4,圆心O到BC的距离为 ,则圆O的半径为{#blank#}1{#/blank#}.
已知:直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于A、F(不与B重合),直线l与⊙O相切于C,交AB于E,且与AF垂直,垂足为G,连接AC.
(1)求证:∠BAC=∠CAG;
(2)求证:AC2=AE•AF.
如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是⊙O的切线.
(2)若= , 求的值.
如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.
求证:(Ⅰ)∠PAC=∠CAB;
(Ⅱ)AC2 =AP•AB.
试题篮