试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:模拟题
难易度:普通
吉林省东北师大附高2021届高三下学期理数第四次模拟考试试卷
如图,已知抛物线
的焦点为
,
四点都在抛物线上,直线
与直线
相交于点F,且直线
斜率为1.
(1)、
求
和
的值;
(2)、
证明直线PQ过定点,并求出该定点.
举一反三
已知抛物线
的焦点为
,准线为
,
是
上一点,
是直线
与
的一个交点,若
,则
( )
椭圆
的两个顶点
过A,B分别作与
垂直的直线交椭圆
与
,若
,则椭圆的离心率{#blank#}1{#/blank#}.
如图,
C、D
是离心率为
的椭圆的左、右顶点,
、
是该椭圆的左、右焦点,
A、B
是直线
4上两个动点,连接
AD
和
BD
, 它们分别与椭圆交于点
E、F
两点,且线段
EF
恰好过椭圆的左焦点
. 当
时,点E恰为线段
AD
的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:以AB为直径的圆始终与直线EF相切.
已知抛物线
的焦点F与椭圆C:
的一个焦点重合,且点F关于直线
的对称点在椭圆上.
在平面直角坐标系
中,
为坐标原点,
,已知平行四边形
两条对角线的长度之和等于4.
如图,点
在双曲线
上,且
的中点
在直线
上,线段
的中垂线
与
轴交于点
, 则双曲线的方程可以为{#blank#}1{#/blank#}.
返回首页
相关试卷
2025高考一轮复习(人教A版)第十六讲 三角函数的应用
2025高考一轮复习(人教A版)第五十三讲 列联表与独立性检验
2025高考一轮复习(人教A版)第五十二讲 一元线性回归模型及其应用
2025高考一轮复习(人教A版)第五十一讲 成对数据的相关关系
2025高考一轮复习(人教A版)第五十讲 正态分布
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册