试题 试卷
题型:多选题 题类:常考题 难易度:普通
福建省宁德市2019-2020学年高一下学期数学期末考试试卷
如图,在底面为平行四边形的四棱锥P﹣ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.
已知四边形ABCD是矩形,AB=1,AD=2,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱锥C﹣PFD的体积;
(3)在棱PA上是否存在一点G,使得EG∥平面PFD,若存在,请求出的值,若不存在,请说明理由.
①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱锥A′﹣DEF的体积最大值为 a3;
④动点A′在平面ABC上的射影在线段AF上;
⑤二面角A′﹣DE﹣F大小的范围是[0, ].
其中正确的命题是{#blank#}1{#/blank#}(写出所有正确命题的编号)
试题篮