题型:解答题 题类:常考题 难易度:普通
四川省眉山市2016-2017学年高二下学期理数期末考试试卷
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是 =
x+
,其中
=
,
=
﹣
.
x | ﹣2 | ﹣1 | 0 | 1 | 2 |
y | 5 | 2 | 2 | 1 |
通过上面的五组数据得到了x与y之间的线性回归方程: =﹣x+2.8;但现在丢失了一个数据,该数据应为( )
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(Ⅰ)请根据相关系数 的大小判断回收率
与
之间是否存在高度线性相关关系;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出 关于
的线性回归方程
,并预测当
时回收率
的值.
参考数据:
1 | 0 | 其他 | |||
| 完全相关 | 不相关 | 高度相关 | 低度相关 | 中度相关 |
,
年份代号( | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
当年收入( | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求 关于
的线性回归方程
;
(Ⅱ)试预测2020年该企业的收入.
(参考公式:
,
)
零件数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(min) | 62 | 75 | 81 | 89 |
现发现表中有一个数据看不清,请你推断该数据的值为{#blank#}1{#/blank#}.
试题篮