试题 试卷
题型:解答题 题类:模拟题 难易度:困难
浙江省2017年绍兴市诸暨市数学高考二模试卷
如图,P(x0 , y0)是椭圆 +y2=1的上的点,l是椭圆在点P处的切线,O是坐标原点,OQ∥l与椭圆的一个交点是Q,P,Q都在x轴上方
①求△OPQ的面积
②求直线PQ在y轴上的截距的取值范围.
定理:若点(x0 , y0)在椭圆 +y2=1上,则椭圆在该点处的切线方程为 +y0y=1.
已知椭圆 , 以O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A、B,若四边形PAOB为正方形,则椭圆的离心率为( )
(Ⅰ)若椭圆V过点(﹣ , ),求椭圆C的方程;
(Ⅱ)若直线l:y=kx+b与椭圆C交于B、P两点,若以PQ为直径的圆过点B,证明:存在k∈R, = .
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.
试题篮