试题 试卷
题型:解答题 题类:模拟题 难易度:普通
2017年北京市海淀区高考数学查漏补缺试卷
如图,AC=2ED,AC∥平面EDB,AC⊥平面BCD,平面ACDE⊥平面ABC.
(Ⅰ)求证:AC∥ED;
(Ⅱ)求证:DC⊥BC;
(Ⅲ)当BC=CD=DE=1时,求二面角A﹣BE﹣D的余弦值;
(Ⅳ)在棱AB上是否存在点P满足EP∥平面BDC;
(Ⅴ)设 =k,是否存在k满足平面ABE⊥平面CBE?若存在求出k值,若不存在说明理由.
求证:
(Ⅰ)求三棱锥P﹣ABD的体积.
(Ⅱ)在∠ACB的平分线所在直线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(Ⅰ)求证:BF∥平面ADE;
(Ⅱ)若AC=4,求证:平面ADE⊥平面BCDE;
(Ⅲ)若AC=4,求几何体C﹣BDF的体积.
(Ⅰ)若O是CD的中点,证明:BO⊥PA;
(Ⅱ)求平面PAB与平面PAD夹角的余弦值.
试题篮