题型:解答题 题类:模拟题 难易度:困难
2017年山东省莱芜市高考数学二模试卷(理科)
(Ⅰ)现从茎叶图的数据中任取4个数据分别替换m的值,
求至少有2个数据使得函数f(x)没有零点的概率;
(Ⅱ)以频率估计概率,若从该组数据中随机抽取4个数据分别替换m的值,记使得函数f(x)没有零点的个数为ξ,求ξ的分布列及数学期望.
品牌 | 甲 | 乙 | |||
首次出现故障时间x(年) | 0<x<1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润(万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1 , 生产一辆乙品牌轿车的利润为X2 , 分别求X1 , X2的分布列;
(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.
(Ⅰ)求雕刻师当天收入(单位:元)关于雕刻量n(单位:粒,n∈N)的函数解析式f(n);
(Ⅱ)该雕刻师记录了过去10天每天的雕刻量n(单位:粒),整理得如表:
雕刻量n | 210 | 230 | 250 | 270 | 300 |
频数 | 1 | 2 | 3 | 3 | 1 |
以10天记录的各雕刻量的频率作为各雕刻量发生的概率.
(ⅰ)在当天的收入不低于276元的条件下,求当天雕刻量不低于270个的概率;
(ⅱ)若X表示雕刻师当天的收入(单位:元),求X的分布列和数学期望.
(Ⅰ)若某日播报的 为118,已知轻度污染区 的平均值为74,中度污染区 的平均值为114,求重度污染区 的平均值;
(Ⅱ)如图是2018年11月的30天中 的分布,11月份仅有一天 在 内.
组数 | 分组 | 天数 |
第一组 |
| 3 |
第二组 |
| 4 |
第三组 |
| 4 |
第四组 |
| 6 |
第五组 |
| 5 |
第六组 |
| 4 |
第七组 |
| 3 |
第八组 |
| 1 |
①郑州市某中学利用每周日的时间进行社会实践活动,以公布的 为标准,如果 小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;
②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到 不小于180的天数为 ,求 的分布列及数学期望.
试题篮