试题 试卷
题型:解答题 题类:常考题 难易度:普通
直线与圆锥曲线的综合问题+
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:x=my+3(m≠0)交椭圆C于M,N两点.
(i)若以弦MN为直径的圆过坐标原点O,求实数m的值;
(ii)设点N关于x轴的对称点为N1(点N1与点M不重合),且直线N1M与x轴交于点P,试问△PMN的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(Ⅱ)过点F的直线l与椭圆C交于不同的两点M,N,是否存在直线l,使得△BFM与△BFN的面积比值为2?若存在,求出直线l的方程;若不存在,说明理由.
如图,点F1 , F2分别是椭圆C:的左、右焦点.点A是椭圆C上一点,点B是直线AF2与椭圆C的另一交点,且满足AF1⊥x轴,∠AF2F1=30°.
(1)求椭圆C的离心率e;
(2)若△ABF1的周长为4 , 求椭圆C的标准方程;
(3)若△ABF1的面积为8 , 求椭圆C的标准方程.
试题篮