试题 试卷
题型:解答题 题类:模拟题 难易度:普通
2017年陕西省榆林市高考数学二模试卷(理科)
(1)求f(x)的单调区间和极值;
(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=﹣1叫做f(x)=x2+2x的下确界,若函数f(x)= +lnx的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln > .
试题篮