试题 试卷
题型:解答题 题类:常考题 难易度:普通
2016-2017学年重庆七中高二上学期期中数学试卷(理科)
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,∠DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
试证:AB⊥平面BEF.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,∠DAB=∠ABC=90°,AB=4,BC=3,AD=5,E是CD的中点.
(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是 .
试题篮