试题 试卷
题型:单选题 题类:常考题 难易度:普通
2015-2016学年青海省西宁五中高二上学期期末数学试卷
(1)求证:平面AEC⊥平面PDB;
(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.
如图,在四棱锥S﹣ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
(Ⅰ)求证:AM∥面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值;
(Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为θ,求sinθ的最大值.
(Ⅰ)求证:FG∥平面BED;
(Ⅱ)求证:平面BED⊥平面AED;
(Ⅲ)求直线EF与平面BED所成角的正弦值.
(Ⅰ)求证:D为AA1中点;
(Ⅱ)求直线BC1与平面BDC所成角正弦值大小;
(Ⅲ)在△ABC边界及内部是否存在点M,使得B1M⊥面BDC,存在,说明M位置,不存在,说明理由.
试题篮